SemRelData ― Multilingual Contextual Annotation of Semantic Relations between Nominals: Dataset and Guidelines

نویسندگان

  • Darina Benikova
  • Christian Biemann
چکیده

Semantic relations play an important role in linguistic knowledge representation. Although their role is relevant in the context of written text, there is no approach or dataset that makes use of contextuality of classic semantic relations beyond the boundary of one sentence. We present the SemRelData dataset that contains annotations of semantic relations between nominals in the context of one paragraph. To be able to analyse the universality of this context notion, the annotation was performed on a multi-lingual and multi-genre corpus. To evaluate the dataset, it is compared to large, manually created knowledge resources in the respective languages. The comparison shows that knowledge bases not only have coverage gaps; they also do not account for semantic relations that are manifested in particular contexts only, yet still play an important role for text cohesion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Annotation of Direct Reported Speech in Arabic and French, According to a Semantic Map of Enunciative Modalities

We present an analysis of the linguistic markers of the enunciative modalities in direct reported speech, in a multilingual framework concerning Arabic and French. Furthermore, we present a platform for automatic annotation of semantic relations, based on the Contextual Exploration method. This platform allows the automatic annotation and categorisation of quotational segments in both languages...

متن کامل

COCO-Stuff: Thing and Stuff Classes in Context

Semantic classes can be either things (objects with a well-defined shape, e.g. car, person) or stuff (amorphous background regions, e.g. grass, sky). While lots of classification and detection works focus on thing classes, less attention has been given to stuff classes. Nonetheless, stuff classes are important as they allow to explain important aspects of an image, including (1) scene type; (2)...

متن کامل

FBK_NK: A WordNet-Based System for Multi-Way Classification of Semantic Relations

We describe a WordNet-based system for the extraction of semantic relations between pairs of nominals appearing in English texts. The system adopts a lightweight approach, based on training a Bayesian Network classifier using large sets of binary features. Our features consider: i) the context surrounding the annotated nominals, and ii) different types of knowledge extracted from WordNet, inclu...

متن کامل

ISI: Automatic Classification of Relations Between Nominals Using a Maximum Entropy Classifier

The automatic interpretation of semantic relations between nominals is an important subproblem within natural language understanding applications and is an area of increasing interest. In this paper, we present the system we used to participate in the SEMEVAL 2010 Task 8 Multi-Way Classification of Semantic Relations between Pairs of Nominals. Our system, based upon a Maximum Entropy classifier...

متن کامل

Automatic identification of semantic relations in Italian complex nominals

This paper addresses the problem of the identification of the semantic relations in Italian complex nominals (CNs) of the type N+P+N. We exploit the fact that the semantic relation, which is underspecified in most cases, is partially made explicit by the preposition. We develop an annotation framework around five different semantic relations, which we use to create a corpus of 1700 Italian CNs,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016